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Standard Dual Quaternion Optimization and Its Application in the Hand-Eye

Calibration Problem

WA K&
MM EFREKFE

# E : The dual quaternion optimization problem, where objective and constraint
functions have dual quaternion variables and dual number function values naturally
arises from applications. In this paper, we show that several common dual quaternion
functions, such as the power function, the magnitude function, the 2-norm function
and the kth largest eigenvalue function of dual quaternion Hermitian matrices, are
standard dual quaternion functions, i.e., the standard parts of their function values
depend upon only the standard parts of the dual quaternion variables. Furthermore, the
sum, product, minimum, maximum and composite functions of two standard dual
functions, the logarithm and the exponential of a standard unit dual quaternion
functions, are still standard dual quaternion functions. We show that to solve an
equality constrained standard dual quaternion optimization problem, we only need to
solve two quaternion optimization problems. We briefly discussed the solution
method for the general standard dual quaternion optimization problem. Thus, if the
dual quaternion functions are standard, the related dual quaternion optimization
problem is solvable. Then, we show that the dual quaternion optimization problems
arising from the hand-eye calibration problem are equality constrained standard dual
quaternion optimization problems.
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Optimization and Applications in Hyperspectral Image Processing
~EE #K
FHRERF

# E : In this talk, hyperspectral image processing methods, e.g., denoising,
demosaicing, and destriping, etc are discussed and reported for tensor optimization
and applications. Numerical examples are given to demonstrate the performance of
such methods.
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Tensor Models for Image and Video Analysis
o #&
ERRT KF

# & : Tensor models can be used for multidimensional data representation and
analysis effectively. In this presentation, we discuss our recent work on solving
several image and video recognition problems using higher-order tensors. A short
video can be considered as a third-order tensor and incremental singular value
decomposition (SVD) can be applied to the data. The decomposition is updated
gradually rather than computed for each overlapping period independently, and this
can reduce the computing time significantly and make it possible to implement object
tracking in real-time. Each singular vector in SVD is derived from all the input data
and the change of a single data entry can alter the decomposition results. We have
recently studied CUR decomposition to overcome this limitation. Instead of
combining the input data, we sample them in CUR decomposition. Only a small
number of tensor fibers are needed to represent a low-rank tensor. We will report our
recent work on image matching using CUR decomposition. Other related work, such
as hardware accelerators for tensor computing will also be discussed.
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A Portmanteau Local Feature Discrimination Approach to the Classification

with High-dimensional Matrix-variate Data

B Hi
RS PR

# E : Matrix-variate data arise in many scientific fields such as face recognition,
medical imaging, etc. Matrix data contain important structure information which can
be ruined by vectorization. Methods incorporating the structure information into
analysis have significant advantages over vectorization approaches. In this article, we
consider the problem of two-class classification with high-dimensional matrix-variate
data, and propose a novel portmanteau-local-feature discrimination (PLFD) method.
This method first identifies local discrimination features of the matrix variate and then
pools them together to construct a discrimination rule. We investigated the theoretical
properties of the PLFD method and established its asymptotic optimality. We carried
out extensive numerical studies including simulation and real data analysis to
compare this method with other methods available in the literature, which
demonstrate that the PLFD method has a great advantage over the other methods in
terms of misclassification rate.
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Generalized Factor Model for Ultra-high Dimensional Correlated Variables with

Mixed Types
wED HR
HEREAF

# E : As high-dimensional data measured with mixed-type variables gradually
become prevalent, it is particularly appealing to represent those mixed-type
high-dimensional data using a much smaller set of so-called factors. Due to the
limitation of the existing methods for factor analysis that deal with only continuous
variables, in this paper, we develop a generalized factor model, a corresponding
algorithm and theory for ultra-high dimensional mixed types of variables where both
the sample size $n$ and variable dimension p could diverge to infinity. Specifically,
to solve the computational problem arising from the non-linearity and mixed types,
we develop a two-step algorithm so that each update can be carried out in parallel
across variables and samples by using an existing package. Theoretically, we establish
the rate of convergence for the estimators of factors and loadings in the presence of
nonlinear structure accompanied with mixed-type variables when both »n and p
diverge to infinity. Moreover, since the correct specification of the number of factors
is crucial to both the theoretical and the empirical validity of factor models, we also
develop a criterion based on a penalized loss to consistently estimate the number of
factors under the framework of a generalized factor model. To demonstrate the
advantages of the proposed method over the existing ones, we conducted extensive
simulation studies and also applied it to the analysis of the NFBC1966 dataset and a
cardiac arrhythmia dataset, resulting in more predictive and interpretable estimators
for loadings and factors than the existing factor model.

W|ENFEAN: HER, TEWERFEREER, gutitido
FAE. BEFREEES 52 IMS-fellow, #UA HHATL Y E RIS 2L
%, BEERAHEFRERSIREE, BXRE THAL LIERE
H, ERES BB RN LK. FEB TR NAESEOT
hy FEIAERL . AEAAEGE T BRBUEE AT, R,
BF 5% i SR R R A0 AL 46 B bR Gt vh 2% DU R T2 31 11) AoS, JASA,
JRSSB, Biometrika M1t EZ 5T AT JOE & JBES F. #k
#3252 [H br IMS-China, IBS-CHINA }2 ICSA-China Z& 5, o
m A8 MG R SR EK, FERSSHT RS BEER S5 A

: TR SHEL, HmeE TR EE R 2Rl &K,
FER G A Z AN SRR J )52 bR gt %2 T Biometrics,

Journal of Business & Economic Statistics, Scandinavian Journal of Statistics, Canadian

Journal of Statistics, Statistics and Its Interface, Statistical Theory and Related Fields,
Associate Editor, [EAZOEARAT (BHMES) « (RapE55%) © (B
ST SEMH) wE.



Tensor Q-Rank: New Data Dependent Definition of Tensor Rank
wER #HE
LmA%¥

# E: Recently, the Tensor Nuclear Norm (TNN) regularization based on t-SVD has
been widely used in various low tubal-rank tensor recovery tasks. However, these
models usually require smooth change of data along the third dimension to ensure
their low rank structures. In this talk, I will introduce a new definition of data
dependent tensor rank named tensor Q-rank by a learnable orthogonal matrix Q, and
further introduce a unified data dependent low rank tensor recovery model. According
to the low rank hypothesis, we introduce two explainable selection method of Q,
under which the data tensor may have a more significant low tensor Q-rank structure
than that of low tubal-rank structure. Specifically, maximizing the variance of singular
value distribution leads to Variance Maximization Tensor Q-Nuclear norm (VMTQN),
while minimizing the value of nuclear norm through manifold optimization leads to
Manifold Optimization Tensor Q-Nuclear norm (MOTQN). Moreover, we apply these
two models to the low rank tensor completion problem, and then give an effective
algorithm and briefly analyze why our method works better than TNN based methods
in the case of complex data with low sampling rate. Finally, experimental results on
real-world datasets demonstrate the superiority of our proposed model in the tensor
completion problem with respect to other tensor rank regularization models.
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Multi-linear PageRank: Uniqueness and Algorithms
R #x
Hm WK F

#E: Multi-linear PageRank is a generalization of PageRank, which can be applied
to Data clustering, Hypergraph partitioning et al. In this talk we give uniqueness of
the PageRank vector and propose some algorithms for solving multi-linear PageRank.
Numerical examples are given to illustrate the efficiency of the proposed algorithms.
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Learning Diagonal Gaussian Mixture Models and Incomplete Tensor

Decompositions
ERE #HE
fm N A E TR

#E: This talk discusses how to learn parameters in diagonal Gaussian mixture
models. The problem can be formulated as computing incomplete symmetric tensor
decompositions. We use generating polynomials to compute incomplete symmetric
tensor decompositions and approximations. Then the tensor approximation method is
used to learn diagonal Gaussian mixture models. We also do the stability analysis.
When the first and third order moments are sufficiently accurate, we show that the
obtained parameters for the Gaussian mixture models are also highly accurate.

This is a joint work with Bingni Guo and Zi Yang.
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Dimension Reduction for Covariates in Network Data

REX #HK
AL TR S K

#E: A problem of major interest in network data analysis is to explain the strength
of connections using context information. To achieve this, we introduce a novel
approach, called network supervised dimension reduction, in which covariates are
projected onto low-dimensional spaces to reveal the linkage pattern without assuming
a model. We propose a new loss function for estimating the parameters in the resulting
linear projection, based on the notion that closer proximity in the low-dimension
projection corresponds to stronger connections. Interestingly, the convergence rate of
our estimator is found to depend on a network effect factor, which is the smallest
number that can partition a graph in a manner similar to the graph colouring problem.
Our method has interesting connections to principal component analysis and linear
discriminant analysis, which we exploit for clustering and community detection. The
proposed approach is further illustrated by numerical experiments and analysis of a
pulsar candidate’s dataset from astronomy.
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Robust Tensor Completion: Equivalent Surrogates, Error Bounds and

Algorithms
RGN €4
B A

# E : Robust Low-Rank Tensor Completion (RTC) problems have received
considerable attention in recent years such as signal processing and computer vision.
In this paper, we focus on the bound constrained RTC problem for third-order tensors
which recovers a low-rank tensor from partial observations corrupted by impulse
noise. A widely used convex relaxation of this problem is to minimize the tensor
nuclear norm for low rank and the $\ell 1$-norm for sparsity. However, it may result
in biased solutions. To handle this issue, we propose a nonconvex model with a novel
nonconvex tensor rank surrogate function and a novel nonconvex sparsity measure for
RTC problems under limited sample constraints and two bound constraints, where
these two nonconvex terms have a difference of convex functions structure. Then, a
proximal majorization-minimization (PMM) algorithm is developed to solve the
proposed model and this algorithm consists of solving a series of convex subproblems
with an initial estimator to generate a new estimator which is used for the next
subproblem. Theoretically, for this new estimator, we establish a recovery error bound
for its recoverability and give the theoretical guarantee that lower error bounds can be
obtained when a reasonable initial estimator is available. Then, by using the
Kurdyka-L ojasiewicz property exhibited in the resulting problem, we show that the
sequence generated by the PMM algorithm globally converges to a critical point of
the problem. Extensive numerical experiments including color images and
multispectral images show the high efficiency of the proposed model
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Rank-R Positive Hermitian Approximation Algorithms and Positive Hermitian

Decompositions of Hermitian Tensors

RAR #K
& B A A%

# & : Hermitian tensor is regarded as an extension of Hermitian matrix and can be
used to represent quantum mixed state. In quantum information, the problem of
separability discrimination and decomposition of quantum mixed state is still an
important and hard problem. In this paper, we deduce the gradient of the
approximation function, propose three algorithms: a negative gradient algorithm and a
BFGS algorithm for rank-R positive Hermitian approximation of Hermitian tensors,
and a separability discrimination and decomposition algorithm for Hermitian tensors.
According to the Taylor formula and the convexity analysis, we prove the
effectiveness of the algorithm. Numerical examples also verify the correctness of the
theoretical analysis and the effectiveness of algorithms. They show that BFGS
algorithm can be used to the separability discrimination and the positive Hermitian
decomposition, as well as to obtain a rank positive Hermitian decomposition.
Compared with the semidefinite relaxation algorithm, the BFGS algorithm has the
advantages of less running time and solving the decomposition of higher-order or
higher-dimensional Hermitian tensors.
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