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Two-armed Bandit Problems and Nonlinear Limit Theorems

BRIEH #&
R A

# B : Motivated by two-armed bandit problem and reinforcement learning models,
we prove a central limit theorem for a sequence of random variables whose means are
ambiguous and vary in an unstructured way. Their joint distribution is described by a
set of measures. The limit is (not the normal distribution and is) defined by a
backward stochastic differential equation that can be interpreted as modeling an
ambiguous continuous-time random walk.
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Exploring the Sparsity of Large-scale Statistical Optimization Problems
IEE H®
TWHETKF

# E : It has been widely recognized that the structured sparsity of the optimal
solutions is an intrinsic property for large-scale optimization problems arising from
modern applications in the big data era. In this talk, we shall first illustrate the
structured sparsity of the solutions via some popular machine learning models. In
particular, we shall show that the solution of the convex clustering model can be
highly structurally sparse even if the solution itself is fully dense. We shall then
introduce a dual semismooth Newton based proximal point algorithm (PPDNA) and
explain why it can be much more efficient than the first-order methods for solving a
class of large-scale optimization problems arising from machine learning. The key
point is to adaptively make use of the second-order sparsity of the solutions in
addition to the data sparsity so that, at each iteration, the computational costs of the
second-order methods can be comparable or even lower than those of the first-order
methods. Equipped with the PPDNA, we shall then introduce some adaptive sieving
methodologies to generate solution paths for large-scale optimization problems with
structured sparsity of particular importance in applications. In the last part of the talk,
we shall illustrate the high efficiency of our approach with extensive numerical results

on several important models including convex clustering, lasso, and exclusive lasso.
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Efficient Algorithms and Acceleration Techniques for Solving Convex Clustering

Problems
Kim—Chuan Toh # 3%
B E L A F

# E: We develop a semismooth Newton based augmented Lagrangian (SSNAL)
algorithm for solving large-scale convex clustering problems. Extensive numerical
experiments on both simulated and real data demonstrate that our algorithm is highly
efficient and robust for solving large-scale problems. We also introduce an adaptive
sieving technique to reduce the dimension of the problems we have to solve. As a
result, we can accelerate our SSNAL algorithm by more than 7 times and the ADMM
algorithm by more than 14 times (joint work with Yancheng Yuan, Defeng Sun and

Tsung-Hui Chang).
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Tensor Completion via A Generalized Transformed Tensor T-Product

Decomposition without t-SVD

R H#&
MM FREAE

# E . Matrix and tensor nuclear norms have been successfully used to promote the
low-rankness of tensors in low-rank tensor completion. However, singular value
decomposition (SVD), which is computationally expensive for large-scale matrices,
frequently appears in solving these nuclear norm minimization models. Based on the
tensor-tensor product (T-product), in this talk, we establish the equivalence between
the so-called transformed tubal nuclear norm for a third order tensor and the minimum
of the sum of two factor tensors’ squared Frobenius norms under a general invertible
linear transform. Gainfully, we introduce a spatiotemporal regularized tensor
completion model that is able to maximally preserve the hidden structures of tensors.
Then, we propose an implementable alternating minimization algorithm to solve the
underlying optimization model. It is remarkable that our approach does not require
any SVDs and all subproblems of our algorithm have closed-form solutions. A series
of numerical experiments on traffic data recovery, color images and videos inpainting
demonstrate that our SVD-free approach takes less computing time to achieve
satisfactory accuracy than some state-of-the-art tensor nuclear norm minimization

approaches.
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Regularization and Sparse Optimization via the Hybrid of the L_p Quasi-norm
and L_2 Norm

BEE HEK
tEAF

# E: We propose the hybrid of the L p (0<p<1) quasi-norm and L_2 norm, a new
hybrid regularization to approximate the L 0 norm. By using the hybrid regularization
we establish a new model for sparse optimization. The optimality conditions of the
proposed model are carefully analyzed for constructing a partial linear approximation
fixed-point algorithm. A convergence proof of the algorithm is provided.
Computational experiments on image recovery and deblurring problems clearly
confirm the superiority of the proposed work over several state-of-the-art models in

terms of the signal-to-noise ratio and computational time.
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Recovery of Sparse Solutions of Linear Systems of Equations and Variational
Analysis
RX H#&

W AR R T A

# & : In this talk, we review some conditions which ensure the recovery of sparse
solution of linear equations via $\ell 0%, $\ell 13, and $\ell p$ (0 < p <1) regularized
optimization problems and the robust recovery with a linear rate via constrained
minimization problem and Tikhonov regularization problem. For $\ell 1$ regularized
optimization problem, the unique solution is the necessary and sufficient condition for
the robust recovery with a linear rate, but not for general regularized terms. A
sufficient (but not necessary in general) condition via the geometric notion of descent
cone for robust recovery with a linear convergence rate have been proposed for
general class of regularizers by solving Tikhonov regularization problem. This
condition is equivalent to the sharp solution for the case when the regularizer being
a supporting function of a compact convex set. For a nonnegative Isc (convex)
regularizer, the sharp (or strong) minimizer guarantee robust recovery with linear rate
(or sublinear rate). We also present some characterizations for sharp or strong

solutions of convex regularized optimization problems.
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A Stochastic Linearized Proximal Method of Multipliers for Convex Stochastic

Optimization with Expectation Constraints
[ &
AERTA¥

# % : This talk considers the problem of minimizing a convex expectation function
with a set of inequality convex expectation constraints. We present a computable
stochastic approximation type algorithm, namely the stochastic linearized proximal
method of multipliers, to solve this convex stochastic optimization problem. This
algorithm can be roughly viewed as a hybrid of stochastic approximation and the
traditional proximal method of multipliers. Under mild conditions, we show that this
algorithm exhibits ( ~1/2) expected convergence rates for both objective reduction
and constraint violation if parameters in the algorithm are properly chosen, where K
denotes the number of iterations. Moreover, we show that, with high probability, the

1 1
algorithm has  (log( ) 72) ) constraint violation bound and  (log ( )%? T2)
objective bound. Some preliminary numerical results demonstrate the performance of
the proposed algorithm.

WENEA: KL T, KIEHE TR HEER 22 B d%, o
AT 1989 47 H, 199247 H, 1998 4 7 AE KEHT.
KEERFHEC: 2R LA, B8FE SR
il -2, TR AL, WA T E R R .
FENFETHFRFENIA, R, 2255 i
1, Fx Tl 2% #1 ] Operations Research, Mathematical
Programming, SIAM Journal on Optimization, Mathematics of
Operations Research, Mathematics of Computation %5 & & %
R, MUEREEEY 2SS, TEEE AR
R 5> 2 Bl 2 K, Asia-Pacific Journal of Operational
Research M [Eiz 55 o) (BB 54 40) W2, EX BARESRHC ISP ER.
2020 FR1G P EIZ E F R AR B EI L.




Allen-Cahn Message Passing for Graph Neural Networks
&h #RK
LtEREAF

# & : Neural message passing is a basic feature extraction unit for graph-structured
data considering neighboring node features in network propagation from one layer to
the next. We model such process by an interacting particle system with attractive and
repulsive forces and Allen-Cahn force arising in the modeling of phase transition. The
dynamics of the system is a reaction-diffusion process which can separate particles
without blowing up. This induces an Allen-Cahn message passing (ACMP) for graph
neural networks where the numerical iteration for the particle system solution
constitutes the message passing propagation. ACMP which has a simple
implementation with a neural ODE solver can propel the network depth up to one
hundred of layers with theoretically proven strictly positive lower bound of the
Dirichlet energy. It thus provides a deep model of GNNs circumventing the common
GNN problem of oversmoothing. GNNs with ACMP achieve state of the art

performance for real-world node classification tasks on both homophilic and

heterophilic datasets.
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Finding the Least Element of A Nonnegative Solution Set of A Class of

Polynomial Inequalities
KIEH &
RBERF

# ZE : In this talk, we consider the least element problem of a nonnegative solution set of a
system of inequalities defined by a homogeneous polynomial mapping and a vector. In the set
under consideration, the homogeneous polynomial mapping is defined by a tensor. When the
tensor involved is square, the set under consideration is just the feasible set of the tensor
complementarity problem (TCP). We first introduce the concept of the generalized implicit
Z-tensor, and prove that it is a generalization of Z-tensors even if it reduces to a square tensor.
Then, under the assumption that the considered set is nonempty and the tensor involved is a
generalized implicit Z-tensor, we propose an iterative method for finding the least element of
the considered set. Specifically, we solve a series of corresponding systems of
lower-dimensional tensor equations by continuous recognition of the positive components in
the least element, and prove that the least element of the set can be obtained within finite step
iterations. When the tensor involved is square, the least element obtained is also a solution of
the TCP. Compared with the existing methods for finding the least-element solution of the
TCP, our method does not require any additional assumptions and has lower computational

costs. Preliminary numerical experiments show that the proposed method is effective.
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